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In the construction of mathematical models which have to describe the 

motion of different types of media (water and other liquids, elastically 

and plastically deformable materials), the basic relations of these 

models are frequently formulated without referring to the law of conserv- 

ation of energy, i.e. the first law of thermodynamics. The system of 

equations of a model becomes closed, and different problems are formu- 

lated and solved. Nevertheless. a model established without the use of 

thermodynamical concepts cannot be considered to be complete, and the 

question arises if this model can be justified thermodynamically, i.e. 

if it does not contradict the basic concepts of thermodynamics. 

On the other hand, in order to formulate the system of equations de- 

scribing the motion of a medium, it is necessary to be able to generalize 

the thermodynamical relations of a medium which are valid for reversible 

processes without macroscopic motions to processes with macroscopic 

motions, usually complicated by dissipative (irreversible) factors. Here, 

the question arises if the thermodynamics of reversible static Processes 

may be preserved for the problems of motion, or if it should be essen- 

tially changed. Obviously, the possibility of preserving the thermo- 

dynamics without changes is of considerable interest. It is necessary, 

therefore, to investigate in each specific case if such a possibility 

exists. 

In this note, a discussion of these problems is given (as it seems 

that a clear analysis of them does not exist in literature) because they 

currently have acquired a certain timeliness, especially in the mechanics 

of deformable solid media. 
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1. Consider an ideal fluid whose equation of state has the form* 

P = f (P) (1.1) 

where p is pressure, and p is density. From the relation 

TdS = dE + pdV (1.2) 

which is a consequence of the first and the second laws of thermodynamics 
of reversible processes [ 1 1 (with T being the temperature, S and E being 
the entropy and internal energy per unit mass, respectively, and V= l/p); 
the following relation is obtained on the basis of the integrability of 
OS 

($-), i- P = T (;;i)>, (1.3) 

Substituting here the equation of state (1. l), we obtain 

C3E ( > WT 
=-p=-_I +. ( ), or, E(T,V =-\f(G)fl+A(T) 

where A(T) is an arbitrary function of temperature. But 

aE ( > -ZFV 
= A’ (T)=Cv 

where C, is the heat capacity at constant volume, which thus proves to 
be dependent only on temperature. Therefore, we finally obtain the 
following expression for the internal energy of the medium 

E (T,V) =\Cv (T)dT --\f(+)dV (1.4) 

This mediun is called the medium with separable internal energy 
(energy separates into the part dependent only on temperature and the 
part dependent on1 y on specific volume). 

Sbstituting (1.4) into (1.2) and integrating, we obtain the expres- 
sion for ent mpy 

s= s T&J’ (1.5) 

* The discussion of thermodynamical properties of the medium of this 

type is given in 12 1. Here, this case is considered for the complete- 

ness of presentation and in order to exhibit some additional details. 
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which proves to be a function of temperature only. Similarly, the ex- 
pressions for all remaining the~~~i~~ characteristic functions may 
be obtained. In particular, for free energy Y we have 

(1.6.) 

i.e. it also separates, Furthermore, because 

SQ=TdS =T %dT =CdT =Cv (T)dT 

ail the heat capacities coincide and depend on temperature only. 

Finally, the coefficient of thermal expansion Q of this medium is 
equal to zero, because on the basis of (1.11 

1 cw 
a=-F -377 P= ( > 0 

Conversely, if the coefficient of thermal expansion is equal to zexoo, 
then the medium possesses only one coefficient of thermal capacity, 
separable internal energy, and the equation of state of the type (1.1). 

It is interesting to note that, in a medium of the type considered, 
the isotherms and the adiabatics coincide, and it is impossible to com- 
plete a Carnot cycle for this medium. 

‘lhe equation of state of the type (1.1) is frequently used for the de- 
scription of notion of water with compressibility being taken into 
account (see, for exmqle, 13 1 1, In this, the system of equations de- 
scribing this motion is closed without the use of the equations of 
energy. We see, that the thermodynamics of reversible processes may be 
constructed for this medium aecoding to the presented scheme. If we 
assume that viscosity and thermal conductivity are absent, and that the 
processes occurring in the fluid during the motion are also reversible, 
i.e. the thermodynamics of equilibrium is applicable, then the model is 
thermodynamically complete and correct, and the equation of energy 
assumes the form 

In this, the mechanical problem is entirely separated from the thermal 
problem. The system of equations for the determination of the velocity 
field, the pressure, and the density is closed without Equation (L 8) t 
and they may be solved independently from the latter. After the velocity 
field is determined, it is possible, if necessary, to solve Equation 
(1.8) and to find the temperature field. 
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Another, more frequent case of a mediun of the type considered is the 
model of an incompressible ideal fluid without thermal conductivity. ‘lhe 
above statements apply also to this case. 

The model of an ideal elastic Hookean solid is an example of the model 
of a deformable solid medium, which is thermodynamically similar to that 
considered previously. Considering small static deformations of such a 
medium as reversible processes, the thermodynamics may be constructed in 
the following form [ 4 1. Ihe first and the second laws of thermodynamics 
reduce to the relation 

TdS = dE - ~ij deij (1.9) 

where S and E are the entropy and internal energy per unit volume, re- 
spectively, (b ecause deformations considered in this model are small, 
these quantities correspond approximately to those taken per unit mass) 
U.. are the components of the stress tensor; c are the components of 
dt infinitesimal strain tensor. Temperature T”md E ij are considered 
here as the parameters of state. 

If the relation between the components of stress and strain tensors 
is given by Hooke’s law 

(repeated indices denote sumnation), and the elastic 
&I not depend on temperature, then from the relation 

T - 

eij 

(1.10) 

constants K and G 

(1.11) 

(which follows from the integrability of OS and is analogous to ( 1.3)), 
the relation is obtained 

Integrating it and using ( 1. lo), we obtain 

E (T, Eij)? + (~ll)~ f G (Eij - 

If the heat capacity at constant strain 

$ Ellbj)2 + A (T) (1.12) 

will be denoted by C, . ,, 

:) 
ZJ 

mlalogously to c,, then we have from (1.12 

Cqj = (E) , E,j = A’ (T) =Ceij 67 

i. e. this heat capacity depends only on temperature. 
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Ihe internal energy assumes finally the form 

Substituting (1.13) into (l.9) and integrating, we obtain the expres- 
sion for the entropy 

s zz s cqj G-3 
-------dT T 

(1.14) 

which is analogous to the expression (l.5). 

Similarly, as in the previous case, we pmve that all thermal capa- 
cities coincide (the index E ii may be therefore omitted in Cc _(T)), that 

the coefficient of thermal expansion is equal to rem, and co&quently, 
thermal stresses cannot exist in this medium, etc. It is possible, using 
(1.13) and (1,141, to write the expressions for all remaining thenno- 
dynamical characteristic functions. In particular, we have for free 
energy, analogously to (1.61, 

K 
y = -i- (QI>” + G (&ii -$Ell8ij)’ -i_SC (T) dT - TjydT (1.15) 

In this way, if the elastic constants in the Hooke's law (which plays 
the mle of the equation of state analogously to (1.11) Q not depend on 
temperature, then the complete thenmdynamical model of the medium pmves 
to be a model with separable energy and with entmpy depending on tenpe- 
rature only. 

Assuming, as was done previously, that deformation of the medium in 
the process of motion is reversible and is described by the sane Hooke's 
law, and that the thermodynamics established for the statical reversible 
processes is valid also for motion, we obtain a model of the medium which 
is suitable also for the description of dynamical processes. In this 
case, the system of equations is also closed without the equation of 
energy. The equation of energy reduces here to the simple relation 

(1.16) 

It has been shown in the examples considered that the construction of 
a closed system of equations without the law of conservation of energy 
does not, in general, contradict this law, and a thermodynamics can be 
established for these models. But in these examples we had only revers- 
ible processes. In the majority of eases, the motion of a medium is 
accompanied by irreversible, dissipative phenomena. 
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In establishing the thermodynamics with these phenomena being taken 
into account, the question arises what is the system of the parameters 
of state. Is it the same as for the reversible processes, or should new 
parameters be added, according to the characteristics of dissipative 
factors? The examples which will be considered in the following show that 
in some cases the system of the parameters of state and the forms of 
thermodynamic functions may be retained without changes; in other, more 
complex, cases thermodynamical functions depend al so on additional para- 
meters which, however, are not the thermodynamical parameters of state 
in the ordinary sense. They characterize the irreversible changes of 
properties of a medium which occur during irreversible, dissipative pro- 
cesses in this medium. 

2. It is generally assumed that, for the model of incompressible vis- 
cous heat-conducting fluid, the above thexmodynanics with only one para- 
meter of state, temperature T, is valid, that the closed system of 
mechanical equations (with a temperature-independent coefficient of 
viscosity) remains preserved without the use of the law of conservation 
of energy, aud that the law of conservation of energy gives au additional 

equation, i. e. the equation of heat flux (or input). Integrating this 
equation, the temperature distribution and its changes in time may be 
determined. From the assqtion that the relation 

TdS =dE =C (T)dT(dV=d+o) 

remains valid, and from the equation of heat flux which has a general 

form 

SQ dE 
87--pTt - f 6ijeij 

avi 
eC = T3Tj + 

avj 
a$ > (2-l) 

(where 6 Q/at is the external heat-input 

the components of stress tensor, andr . . 
rate tensor), we have for the case bei:; 

rate per unit volume, u.. are 
‘I 

are the components of strain 

considered 

div(xgrad T) (2.2) 

lhe above relation contains the assurrption that the external heat input 

is due only to heat conduction (cl and K are the coefficients of visco- 

sity and thermal conductivity, respectively). After the mechanical prob- 

lern is solved independently from (2.2), and the velocity field is deter- 

mined, the tgnperature distribution may be found from (2.2). 

'lbe possibility of this generalization of the model over the cases 

with viscosity and heat conduction is confirmed by the fact that the 

results obtained in this way agree with experiments. 
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We can proceed in the sane way also in the case when the fluid is com- 
pressible, and the equation of state has the form (1.1). Assuming that 
the thennodynmnics is valid also for motions with viscosity and heat con- 
duction, i.e. that the relations (1. l), (1.4) and (1.5) remain valid, 
and viscosity is of Newtonian type, with the coefficients of viscosity 
being independent of temperature, we obtain from Equation (2.1) 

PC (T) ‘$ = $l.&jeij - $p (div V)’ + div (xgrad 7’) (2.3) 

The system of dynwical equations remains closed independently of Equa- 
tion (23), which is utilized for the determination of the temperature T, 
after the fields of density and velocity are found from the solution of 
dynamical problems. Similarly, as in the previous case, the validity of 
the constructed model may be checked by experiments. ‘Ihe model itself is 
correct, dynanically and thennodynanically. 

As a third example, let us consider the model of a viscous heat- 
conducting gas, which is the basis of modern dynanics of gases. It is 
assumed for the construction of this model that the system of the para- 
meters of state and the form of thennodynanic functions of a moving gas 
remain the same as for reversible quasi-static processes, i.e. the equa- 
tions of state remain unchanged, the thennodynanical identity is 

TdS =dE + pd; 

and the equation of heat-flow (2.1) assunes the fon 

dE I 
p di = 2 p?ijeij - 7 2 l.~ (div V)2 - p div V + div (X grad T) (2.4) 

Ekperiment confirms the validity of these assumptions.* 

Finally, in a similar manner, the complete model of a linear visco- 
elastic solid may be constructed, retaining the introduced thexmo- 
dynanical relations and functions. In so doing, the 1 aw of conservation 
of energy obviously reduces again to the equation of heat flux, which is 
used for the determination of the temperature field. 

In fact, the relations determining an isotropic visw-elastic body 
have the fonn 14 1 

Oij = Clije+ Tl (eij - $ elltiij) + $e*lbij (2.5) 

l A detailed and very good discussion of these problems may be found in 

[5 1 (Chapter II). 
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where u. .e are “elastic” stresses, 
lboke’s’iaw (1.101, and II and C 

related to strain, as previously, by 
are the coefficients of viscosity. Sub- 

sti tuting these relations into the equation of heat flux f 2.11, and con- 
sidering (1.10) and (1.131, we obtain 

iz = C (I’) g -- 4 Tleijeij + $-q (div V)’ - C (div V)’ = 

= C (T) ‘$ - + Tl (Qj - $ Q&)’ - -$- (etr)” 

or, assuming 6 Q/at = div(~ grad T 1 (isotropic heat conduction) 

C (T) g =+ q (eij - $ ez&)2 -/- $ (~1)~ + div @grad 7’) (2.6) 

If, in addition, the coefficients of viscosity are assumed to be in- 
dependent of temperature, then the system of dynanicsl equations is 
closed, as in previous cases, without the use of the equation of heat 
flux. 

The application of the introduced concepts to the theory of plasti- 
city is of essential and principal significance. The existing theories 
of plasticity have been developed without the use of the law of conserv- 
ation of energy and without thermodynamics1 considerations in general. 
Therefore, the question of thermodynamical correctness arises also in 
relation to these theories. It is necessary to note that, on the one 
hand, the opinions are expressed that the thermodynamical considerations 
should be the essential basis in the construction of the theory of 
plasticity, while on the other hand, the complete ignoring of thermo- 
dynamics may be observed in the majority of books and papers on Plasti- 
city. Both of these points of view are, as we shall see, extreme. 

The existing schemes describing the plastic behavior of metals may be 
completed to full thermodynamical models in the similar way as it was 
done in the previous examples. 

3. Consider, for example, the model of an ideal rigid-plastic material 
of Saint Venant, Levy, and Mises [ 6,7 1. Ihe basic relations of this 
model are: 

‘Ihe relation between the deviator of stress tensor oij’ and the 
strain rate tensor e ij 

Qj = PC&j 

, 

(3.1) 

Ibe yield condition, having usually the form 

6ij’oij’ s zJ2’ = 2ka (3.2) 
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(yield condition of Mises), which makes possible the determination of c 

(21 

‘lhe condition of incompressibility of 

eii = 0 

Substituting these relations into the 
carrying out elementary transformations, 

6Q dE -- 
F= dt 

G eije$ (3.3) 

the material 

(3.4) 

equation of heat flux (2. l), and 
we obtain 

kJ6 (3.5) 

(here and in the following, E and S are referred to unit volume). 

lhe last term in this equation expresses the dissipation of mechanical 
energy in plastic flow of the material. Fntirely analogously to the case 
of an incompressible fluid, it may be assumed that the only parameter of 
state in this case is also the teqerature T md, consequently, 

E =E (T) =\C(T) dT (3.6) 

where C(T) is specific heat capacity of the material, 

s _ c(T) - s 7dT etc. 

Equation (3.51 reduces to the form 

C (T)$ = kd?+div(xgradT) 

(3.7) 

(3.3) 

and may be used for the determination of the tqerature field in the 
flowing pl astic medium. If the plastic wnstant of the material k cbes 
not depend on temperature, then the system of mechanical equations proves 
to be closed without (3.8)) and it may be integrated separately. 

G&sider now the model of the ideal elastic-plastic material of 
Prandtl and Reuss [6,7 1, lhe basic relations of this model are the 
following: 

lhe relation between the deviator of the stress tensor oij’ and the 
deviator of the strain-rate tensor e. .’ is 

tJ 

eij’ = +j- &j’ + e (I@) e (J2’ - ji3 $ sijf (3.9) 

where 
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W E $ Qijeij’ , e(u) = i I b > 0) unit step 
- - (u < 0) c function > 

(3.10) 

and a dot overo..’ denotes the derivative with respect to time, and 
(under the condition of small displacements, velocities, and strains) it 
is simply partial differentiation with respect to time. * 

‘Ihe yield condition of Mises 

Oij’aij’ s ~Jz’ < 2k2 

or, in equivalent form 

(Js’ - k?) e (Jz’ - k”) = 0 (3.11) 

The condition of the elastic volunetric deformation is 

Qll = 3KEl( (3.12) 

Using all these relations, we transform the sum l/2 oijc ij in the 
equation of heat flux (2.1) in the following way: 

f Qjeij = + (aij' + $ all&j) (eij' + $ ellbij) 

= $ Qij’eij’ + $ allell = + Bij' [$-&j’ + e(W) e (J,‘- k2) $ ~ij’] + $ ellell 

t ‘r;“’ + G -& (&ije’Eije’) + e (l%) e (Jz’ - k’) $ lh’ = ___ 

1 d - % 2+&$+e(@)e(J,‘_k2)$~ 
=i!?i dt i ) 

(3.13) 

The components of the deviator of the elastic-strain tensor e . .e’ are 

here introduced; they are related to the components of the deviazr of 
the stress tensor by the Hooke’ s law 

5ij’ = 2Geije’ (3.14) 

In (3.13)) the relation e 1 l = ds ll/dt is taken into account. 

Substituting the expressions (3.13) into Equation (2. l), we have 

* In cases of finite deformation, the determination of time derivatives 

of the stress tensor in the relations (3.9) of Prandtl and Reuss is 

not elementary, and it needs special considerations, as has been 

shown by Prager [ 8 1. See also paper by Sedov [ 9 1 on the same 

sub_i ect. 
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dE i d 

If we assume now that the internal energy E depends only on c 11, 
E . . “, T (as in the case of an ordinary elastic body), and the elastic 

c%stants K and C, and the density in do not depend on temperature, and 

neglecting t I l as compared to 1, we obtain for pE (internal energy per 
unit volume) the following expression: 

K 
E, = pE =T (Q) 2 + Gsije’sije’ + 

s 
C_(T) dT 

1 
=x (G)“+ $+\C(T)~T =+Zj- ~12 + +Qii)Eije’ + ClT)dT (3.16) 

s 

which coincides with (1.13). 

For the entropy and the free energy we again obtain the expressions 

(1.14), (1.15), etc. In this way we again obtain a medium with separable 

energy and with thennodynanic functions of the same variables as in an 

ordinary elastic soiid, i.e. the consideration of plastic deformation in 

the ideal elastic-plastic material of Prandtl and Reuss does not contri- 

bute new paraneters on which thennodynmnic functions would depend. 

In this sense the ideal plastic body is also Oideal” in the thermo- 

dynanic sense; plastic deformation does not influence the thermodynamics 

of the medium. Plastic deformation causes only the dissipation of 

mechanical energy, which in the form of heat *pears in the equation of 

heat flux which has finally the form 

C (T) g = div (X grad T) + e (I&‘) e (J2’ - k2) $$ I&’ (3.17) 

This heat flux (the second component in the right-hand side of (3.17)) 

is obviously always positive, and it exists only if plastic deformation 

occurs. The system of mechanical equations is here al so closed without 

(3.17), and it is integrated separately while (3.17) determines the field 

of temperature. Note that for K + 00 and C-t m all the relations of this 

case transform into the relations of the preceding exmnple (i.e. the re- 

lations of a rigid-plastic mediun). 

Let us finally consider a more complex model of a plastic material, 

i.e. a model with strain hardening. 

In the process of plastic deformation, generally speaking. changes of 
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elastic limits occur, and also elastic constants change. This last 
phenomenon is accompanied by the appearance of anisotmpy in the elastic 
properties of material. Therefore, all the changes of the elastic pro- 
perties of material, caused by plastic deformation, may be considered as 
strain hardening in a broader sense. 

The example of an ideally plastic medium considered above indicates 
that the thermodynamic functions for such a medium depend, in addition 
to the temperature, on the invariant& of the elastic-stress tensor and 
the constant parameters which characterize the elastic properties and 
the yield point of the material. Thus, because these constant parameters 
do not depend on the characteristics of plastic deformation, the entire 
thermodynamics of the medium does not depend on the latter. If these 
parameters change in the process of plastic deformation, then also the 
form of thermodynamic functions changes, i.e. these functions will de- 
pend on the characteristics of plastic deformations. Using a simple model 
of a plastic material with strain hardening, we shall explain what 
thermodynamical consequences result from the consideration of these de- 
pendences. 

Consider the model of the isotropic strain-hardening material of 
Prandtl and Reuss with the yield condition of Mises [7 1. ‘Ihe basic re- 
1 ations of this model may be written in the form 

eij 
I 6’ ES J3J,‘, 611 = 3KE11 

&d_S, + 
at H’(S) e [a” - H (01 e (&“), [a” - H(E)] e [a” - H (5)1 = 0 

(3.18) 

where e is the previously introduced unit step function; H(t) is the 
strain-hardening function; t is the strain-hardening parameter, i. e. the 
measure of plastic defonation, introduced by Odqvist. It is necessary 
to notice that in order to detenine the quantity 5, which on the basis 
of (3.18) may be expressed in terms of the plastic-strain-rate tensor, 
its infinitesimal increments in the process of active plastic deformation 
have to be integrated; however, the introduction of 6 as a new parameter 
with a differential equation for 5 (see (3.18)) reduces all the relations 
of the model to purely differential relations, excluding thus the de- 
pendence of any element of the model on the nhistory of defonnationn. 
The possibility and the necessity of introducing additional parameters 
with corresponding differential equations to achieve the exclusion of 

so-called “history of defonnationn from the model has been show by 
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Se&v. In this case, 4 is such a (only one) paraneter.* 

Substituting now the relations (3.18) into the equation of heat flux 

(2.1) we have to consider that, in addition to the temperature and the 

invariants of the tensor of elastic deformation, the internal energy may 

depend also on the parameter 5‘. It is necessary, however, to keep in 

sight the fact that because the parameter 5 changes only if plastic de- 

formation occurs, i.e. only in irreversible processes, the thenno- 

dynmnical equalities which are valid only for reversible processes sbuld 

be written with (y = 0. In particular, for reversible processes we have 

the thennodynanical equality in the fon (l.91, where the differentials 

of S and E are determined for 5 = const. Considering Hooke's law and 
assuming that elastic constants do not depend on teqerature, this re- 

sults in the expression for internal energy 

and for entropy 

S= c~dT+S,(E) 
s 

(3.19) 

(3.20) 

(where E, and S, are arbitrary functions of 0. 'lhe expressions (3.19) 

and (3.20) differ from (l.13) (or (3.16)) and (l.14) only by possible 

dependence on [. Entropy, as well as heat cpacity, prove to be functions 

of T and 5 only. Internal energy depends on c not only through E,(t) rmd 
C(T, 0, but also through the dependence of the elastic constants, K(c) 

and G(r), on [, which is, in this way, adnissible for the model. 

Assuning again that the relations (3.19) and (3.20) remain valid also 

for the cases of progressing plastic deformation and existing thermal 

conduction, i.e. for the cases of irreversible processes, we substitute 

the relations (3.18) and (3.19) into (2.1) and, after some transfomna- 

tions, we obtain 

. (3.21) 

* Several parameters may exist in the case of a more complex strain- 
hardening plastic medium where the process of plastic deformation is 

accompanied by anisotropy of its elastic properties and the change of 

elastic limits (which is, in general, also anisotropic). The construc- 

tion of thermodynamics for this case may be accomplished essentially 

in the same was as in the simpler case considered here. 
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The first component in Equation (3.21) determines the heat flux due to 

thermal conductivity, and the second component detenines the heat flux 

due to the dissipation of mechanical energy. 

It is interesting 

4 @/dt is converted 

to note that not all the irk of plastic deformation 

into heat, but only a part of it 

odS 6’E d[ 
6 -&---- 

13e dt 

i.e. only the excess over the work which increases the internal energy E 
in connection with changes of 5‘. 

'l%is increase of internal energy may be treated as the energy taken 

by the material for irreversible transformations (irreversible changes of 

structure) which occur during plastic deformation. Because d(/dt is 

positive (see (3.18)), the irk of plastic defonation@@/dt is posi- 

tive. 

It may be shown that, in addition, the excess of this Hlork over the 

energy of transformation should also be positive. 

Integrating the expression for d.S/dt over a volume Q, and using (3.20) 

and (3.21), we obtain 

(3.22) 

where q,, is the noxmal component of the heat-flux vector. Considering 
that the surface 2, bounding the volune Q, is thermally insulated (this 
may be principally realized including into the mediun, at the surface 2, 

a thin layer of an ideal insulating material) we obtain on the basis of 

the second law of thermodynanics 

d3= 5~(graaT)‘dZ.+S~-(B-_~~dT+ \gzdt)() 
dt c2 

(5.23) 
n 62 

Each of the written integrals should be positive, because they repre- 

sent increments of the entropy in a finite volume caused by three in- 

dependent irreversible phenomena: heat conduction, heat evolution by 

dissipation of plastic irk (second integral), and entropy increnent 

caused by the irreversible increasing of the parameter 6 (third integral). 

The quantity <as/6'6)/ (dc/dt) detexmines the entropy increment caused 

by irreversible changes of the material which result in the changes of c$. 

Since this entropy increment is positive and @/dt > 0, then also 
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as/ag> 0. --rhus, the third integral is positive independently of the 
others (this ind~~dence may be formally noted in the independence of 
functions E,(O and S,h$)). Ihe second integral should be also positive, 
it determines the entropy increment caused by internal heat pn,duction 
in irreversible plastic deformation. 

Because the volume Otis arbitrary, the following inequality should be 
satisfied in the region of deformation. 

(3.24) 

which means that the excess of plastic mrk over the energy of conversion 
is positive. 

The functions Ea([) and S,W may be determined by establishing the 
relation between the changes of [ and the microscopic changes of struc- 
ture for which the complementary energy of transformation E,(t) is used 
and which are accompanied by the existence of the entropy S,(c). 

The last exanple considered shows that the dependence of thexmodynanic 
functions on the paraneters characterizing strain hardening, i,e. the in- 
fluence of plastic deformation on elastic properties of the material, 
introduces certain complexities into the thennodynwics of the medium, 
but it does not cause any principal difficulties. 

'Ibe aim of the discussion prest?nted here was to show that the use of 
thexnodynamics for the construction of different models describing the 
motion of fluids and, particularly, plastically deformable solid bodies 
results in certain relations and wncepts which make these models thermo- 
dynmnically complete. Un&rtunately, these concepts are of limited use- 
fulness in the construction of the mechanical parts of models, and they 
do not essentially simplify this main problem. Nevertheless, it is 
necessary to have always a clear picture of the thermodynaaical meaning 
of the model constructed and to be able to complement this model thenno- 
dynamically. 

Finally, I express with pleasure my gratitude to L.I. Sedov for his 
suggestion of dealing with problems of thenaodynwics in the theory of 
plasticity and his discussion, and also to G.I. Barenblatt for his inte- 
rest in this work. 
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